Preskoči na glavno vsebino

Video: Two Deep Learning algorithms

  • Online web session (second half of  video, after 32 minutes of intro)


  • ABSTRACT

    In this video conference, two new algorithms for learning Feed-Forward Artificial Neural Network are presented. In the introduction, a brief description of the development of the existing algorithms and their flaws are shown. The second part describes the first new algorithm - Bipropagation. The basic idea is given first, followed by a detailed description of the algorithm. In the third part yet another new algorithm is given, called Border Pairs Method. Again is first given a basic idea and then follows a detailed description of the algorithm. In the fourth part, the results and findings of experimental work are presented. In the conclusion, it is found that two described algorithms are fast and reliable - the second one is also constructive.

    SPEAKER 

    Bojan PLOJ, PhD
    Born    1965 in Maribor, Slovenia, Europe
    Thesis   Border Pairs Method for learning of neural network
    Job 1 year R&D engineer at Birostroj Computers
       10 years teaching at Electronics high school in Ptuj
       4 years assistant professor University of Maribor
       7 years lecturer at Higher vocational college Ptuj
       3 years lecturer at the college of Ptuj (Artificial intelligence)
    Research
       Voice recognition with NN
       Hexapod gait control with NN
       Bipropagation algorithm for learning NN
       Border pairs method for learning NN 

Komentarji

Priljubljene objave iz tega spletnega dnevnika

Artificial intelligence

          Artificial intelligence (AI) is a relatively young branch of science that stirs the imagination of many. Even movie directors from hollywood are not exceptions. Development in AI area is very fast and there is no indication that this will change soon. I still remember my first contact with learning devices. This happend at the end of the last millennium when I realized neural networks (NN). They have immediately attracted my attention, because such devices were not known till then.           NN are made along the lines of mammalian brain. During the learning NN extract the essence from the data. After the learning we can ask NN questions. It gives us the right answers even to questions that during learning did not participate.  NN learns autonomously and therefore may exceed the teacher's (poeple's) knowledge. Here are some important achievements of artificial intelligence: A couple of years ago the co...

Umetna inteligenca

Umetna inteligenca (UI) je razmeroma mlada veja znanosti, ki mnogim buri domišljijo. Tudi Hollywoodski režiserji niso izjema, saj skorajda ni več znanstveno-fantastičnega filma brez pametnih naprav. Razvoj na  področju UI je zelo hiter in nič ne kaže, da se bo to kmalu spremenilo.  Dobro se še spominjam svojega prvega srečanja z napravami, ki imajo sposobnost učenja. Bilo je to konec minulega tisočletja, ko sem se seznanil z nevronskimi mrežami (NM) V hipu so pritegnile mojo pozornost navkljub dejstvu, da inteligentne naprave takrat še niso bile splošno znane in so le redki verjeli v njihovo svetlo prihodnost. NM  so narejene po vzoru možganov kakršne imamo ljudje in živali. Med samostojnim učenjem so sposobne iz kopice učnih podatkov izluščiti bistvo, zato  lahko uspešno odgovarjajo tudi na vprašanja, ki jih med učenjem niso srečale. Lahko presežejo znanje svojega  učitelja ali tudi celotnega  človeštva.  Omenimo nekatere pomembne dosežke ...

A new Deep Learning Algorithm: One-Step Method

We are living in the AI era where progress is faster and faster each and every single day. Here is another one discovery in this field: One Step Method , a new machine learning algorithm which can do many things, amongst other can replace digital circuits with neurons, can find the even better construction of neural network than Border Pairs Method. More you can find in the 3rd chapter of our book:  Machine Learning: Advances in Research and Applications  from Nova Science Publishers . This new algorithm is also suitable for Deep Learning in combination with other methods like convolutional learning, bipropagation, border pairs method, autoencoder and others.