Preskoči na glavno vsebino

Zgodovinski trenutek za umetno inteligenco



Trenutno globoko učenje (Deep learning) in z njim celotna umetna inteligenca doživlja razcvet, saj je v preteklem letu bilo doseženih nekaj pomembnih in odmevnih rezultatov kot so prepoznavanje fotografij in govora, prevajanje govorjenega besedila, pisanje besedila na osnovi podanih ključnih besed,... Danes, 12. 3. 2016 pa je bil tej zbirki uspehov dodan še en. Googlova globoka nevronska mreža (Deep neural Network) poimenovana AlphaGo je premagala v igri Go najboljšega igralca na svetu, Leeja Sedola.


Igralna plošča azijske miselne igre GO


V tej azijski miselni igri nasprotnika izmenjaje polagata črne in bele kamne na mrežo velikosti 19 krat 19. Nasprotnikovi kamni, ki so obdani z vseh 4 strani se odstranijo iz igralnega polja, cilj igre pa je zavzeti čim večji del tega polja.
Rezultat zgodovinskega dvoboja med človekom in strojem je bil 3 proti 0 v korist stroja. Poraženec Lee je po dvoboju izjavil, da je pozitivno presenečen nad zmogljivostjo umetne inteligence. Ta dogodek ima še toliko večjo težo za razvoj umetne inteligence, ker velja Go za izrazito strateško igro, kjer naučene poteze ne pridejo v poštev, saj je možnih situacij na igralni plošči več kot je vseh atomov vesolju.

Rezultat iskanja slik za alphago
Logotip zmagovalca na dvoboju med človekom in strojem


PS: V prvi polovici leta 2017 (leto kasneje) je Google izzval celo kopico vrhunskih igralcev igre GO, da združijo moči proti izboljšanemu AlphaGo, a je znova zmagal stroj. V drugi polovici leta 2017 so si zadali nov izziv: Tokrat so strojno učenje opravili tako, da so stroju podali le pravila igre brez vsakršnih podatkov o igrah, kjer so sodelovali ljudje. Nasprotnik je bil prejšnji model njigovega računalnika. Rezultat je bil sto proti nič za nov model, kar govori o tem, da ljudje to igro igramo zelo slabo.

Komentarji

Priljubljene objave iz tega spletnega dnevnika

Artificial intelligence

          Artificial intelligence (AI) is a relatively young branch of science that stirs the imagination of many. Even movie directors from hollywood are not exceptions. Development in AI area is very fast and there is no indication that this will change soon. I still remember my first contact with learning devices. This happend at the end of the last millennium when I realized neural networks (NN). They have immediately attracted my attention, because such devices were not known till then.           NN are made along the lines of mammalian brain. During the learning NN extract the essence from the data. After the learning we can ask NN questions. It gives us the right answers even to questions that during learning did not participate.  NN learns autonomously and therefore may exceed the teacher's (poeple's) knowledge. Here are some important achievements of artificial intelligence: A couple of years ago the co...

Umetna inteligenca

Umetna inteligenca (UI) je razmeroma mlada veja znanosti, ki mnogim buri domišljijo. Tudi Hollywoodski režiserji niso izjema, saj skorajda ni več znanstveno-fantastičnega filma brez pametnih naprav. Razvoj na  področju UI je zelo hiter in nič ne kaže, da se bo to kmalu spremenilo.  Dobro se še spominjam svojega prvega srečanja z napravami, ki imajo sposobnost učenja. Bilo je to konec minulega tisočletja, ko sem se seznanil z nevronskimi mrežami (NM) V hipu so pritegnile mojo pozornost navkljub dejstvu, da inteligentne naprave takrat še niso bile splošno znane in so le redki verjeli v njihovo svetlo prihodnost. NM  so narejene po vzoru možganov kakršne imamo ljudje in živali. Med samostojnim učenjem so sposobne iz kopice učnih podatkov izluščiti bistvo, zato  lahko uspešno odgovarjajo tudi na vprašanja, ki jih med učenjem niso srečale. Lahko presežejo znanje svojega  učitelja ali tudi celotnega  človeštva.  Omenimo nekatere pomembne dosežke ...

A new Deep Learning Algorithm: One-Step Method

We are living in the AI era where progress is faster and faster each and every single day. Here is another one discovery in this field: One Step Method , a new machine learning algorithm which can do many things, amongst other can replace digital circuits with neurons, can find the even better construction of neural network than Border Pairs Method. More you can find in the 3rd chapter of our book:  Machine Learning: Advances in Research and Applications  from Nova Science Publishers . This new algorithm is also suitable for Deep Learning in combination with other methods like convolutional learning, bipropagation, border pairs method, autoencoder and others.