Preskoči na glavno vsebino

Novosti strojnega učenja

Znanstvena založba Nova Science Publishers iz New Yorka je nedavno izdala knjigo z naslovom Advances in Machine Learning Research (Napredek v raziskavah strojnega učenja). Tretje poglavje z naslovom  Optimization for Multi-Layer Perceptron: Without the Gradient, je plod slovenske znanosti in opisuje dve novi metodi strojnega učenja. Obe sta nadgradnja zelo uveljavljene metode Backpropagation, ki je temelj delovanja nevronskih mrež, ki so ene od najbolj razširjenih naprav na področju umetne inteligence. Novi metodi pomenita velik napredek, saj odpravljata ozko grlo umetne inteligence - izboljšujeta potek in rezultat učenja.





  
Prva metod se imenuje Bipropagation in je majnša izboljšava, ki omogoča mnogo hitrejše in bolj zanesljivo učenje. Druga metoda - Metoda mejnih parov (angleško Border Pairs Method, BPM) je povsem izvirna in ima številne prednosti pred metodo Backpropagation:

  • samodejno najde primerno zgradbo nevronske mreže (MLP),
  • vedno najde rešitev,
  • za učenje uporablja le ustrezne vzorce,
  • roji vzorce, 
  • poišče kvalitetne značilke,
  • omogoča kvalitetno razšumljanje in
  • že pred pričetkom učenja  ugotovi kako zahtevni so učni vzorci.


Čas bo pokazal kako se bodo na noviteti odzvali znanstveniki in gospodarstveniki. Prvi odzivi znanstvene skupnosti so zelo dobri. Če ti je ta sestavek všečen, klikni G+ spodaj!

  

Komentarji

Priljubljene objave iz tega spletnega dnevnika

Artificial intelligence

          Artificial intelligence (AI) is a relatively young branch of science that stirs the imagination of many. Even movie directors from hollywood are not exceptions. Development in AI area is very fast and there is no indication that this will change soon. I still remember my first contact with learning devices. This happend at the end of the last millennium when I realized neural networks (NN). They have immediately attracted my attention, because such devices were not known till then.           NN are made along the lines of mammalian brain. During the learning NN extract the essence from the data. After the learning we can ask NN questions. It gives us the right answers even to questions that during learning did not participate.  NN learns autonomously and therefore may exceed the teacher's (poeple's) knowledge. Here are some important achievements of artificial intelligence: A couple of years ago the co...

Bionika, zanimiv poklic prihodnosti

Živimo v času, ko se znanje ustvarja in širi vedno hitreje in temu trendu se pridružujemo tudi izobraževalne ustanove. Ponudba smeri in stopenj izobraževalnih programov se vsako leto povečuje in med novimi programi prevladujejo interdisciplinarni. To ustreza manjšim podjetjem, ki so bolj prožna in odzivna in se zato lahko bolje znajdejo v tem gospodarsko razburkanem času. V malih podjetjih namreč ni prostora za množico ozko usmerjenih strokovnjakov, v prednosti so kadri z interdisciplinarno širino, ki jo omogočata mehatronika in predvsem bionika .      Na višji strokovni šoli na Ptuju smo že pred časom zaznali piš tega novega vetra in začeli prikrojevati naša jadra. Prvi korak v to smer je bil program Mehatronika , ki smo ga razvili pred približno desetletjem in povezuje med seboj več tehniških strok. Predvsem so to elektrotehnika, računalništvo in strojništvo. Trg delovne sile je potrdil našo vizijo saj se naši diplomanti uspešno zaposlujejo tako v Sloven...

Beyond Backpropagation

Gartner is predicting a very bright near future for the "Machine learning". 2015 was a peak year of inflated expectations, now, in 2016 is following period of disillusionment and in 2017 should be reached the plateau of productivity. Elsewhere this process usually last for 10 years. One kind of the most popular modern "machine learning" is named "Deep Learning" what is another name for neural networks with little bit more layers and perhaps even with a convolution and/or recursion. The learning of this kinds networks was until now usually based on gradient descent, on slow, iterative, non-reliable process named Backpropagation . That kind of learning is very demanding and extensive. On plain computer can last for hours or even many days and is often unsuccessful concluded. Recently are appeared two algorithms that significantly improve this kind of machine learning: " Bipropagation " and " Border pairs method ". Bipropagat...