Preskoči na glavno vsebino

Border Pairs Method—constructive MLP learning classification algorithm



Border Pairs Method (BPM) is a new constructive method for supervised learning of multilayer perceptron (MLP), which calculates, values of weights and biases directly from the geometry of learning patterns.



To determine BPM’s capabilities, we compared it with three other supervised machine learning methods: Backpropagation , SVM  and Decision Trees. The comparison were made on six databases: XOR, Triangle, Iris, Pen-Based Recognition of Handwritten Digits, Online Pen-Based Recognition of Handwritten Digits and synthetically generated noisy data. Border Pairs Method found near minimal MLP architecture in all described cases. For classification of the Iris Setosa only two border pairs (only four patterns out of 150) were enough for learning the whole data set correctly. In the classification of ‘Pen-Based Recognition of Handwritten Digits’ dataset only 200 learning patterns were used for learning. The BPM correctly identified more than 95% from 3498 handwritten digits, which did not participate in the learning proces. We are particularly satisfied with the results of online learning. The adaptability of the BPM to new incoming patterns is so high, that it easily follows and sometimes even exceeds the offline version of the algorithm. Even with a noisy data, some very good results were obtained. RMSE error of the BPM was significantly lower than that of Backpropagation, especially for the noise lower than 10%.
The initial results of the research are  good starting point for further research work. Some possible directions  are:
·      Noise reduction using border pairs.
·      Algorithm improvement - better integration of border pairs.


Link to the scientific paper
Link to the Book

Bojan PLOJ, PhD



Komentarji

Priljubljene objave iz tega spletnega dnevnika

Artificial intelligence

          Artificial intelligence (AI) is a relatively young branch of science that stirs the imagination of many. Even movie directors from hollywood are not exceptions. Development in AI area is very fast and there is no indication that this will change soon. I still remember my first contact with learning devices. This happend at the end of the last millennium when I realized neural networks (NN). They have immediately attracted my attention, because such devices were not known till then.           NN are made along the lines of mammalian brain. During the learning NN extract the essence from the data. After the learning we can ask NN questions. It gives us the right answers even to questions that during learning did not participate.  NN learns autonomously and therefore may exceed the teacher's (poeple's) knowledge. Here are some important achievements of artificial intelligence: A couple of years ago the co...

Bionika, zanimiv poklic prihodnosti

Živimo v času, ko se znanje ustvarja in širi vedno hitreje in temu trendu se pridružujemo tudi izobraževalne ustanove. Ponudba smeri in stopenj izobraževalnih programov se vsako leto povečuje in med novimi programi prevladujejo interdisciplinarni. To ustreza manjšim podjetjem, ki so bolj prožna in odzivna in se zato lahko bolje znajdejo v tem gospodarsko razburkanem času. V malih podjetjih namreč ni prostora za množico ozko usmerjenih strokovnjakov, v prednosti so kadri z interdisciplinarno širino, ki jo omogočata mehatronika in predvsem bionika .      Na višji strokovni šoli na Ptuju smo že pred časom zaznali piš tega novega vetra in začeli prikrojevati naša jadra. Prvi korak v to smer je bil program Mehatronika , ki smo ga razvili pred približno desetletjem in povezuje med seboj več tehniških strok. Predvsem so to elektrotehnika, računalništvo in strojništvo. Trg delovne sile je potrdil našo vizijo saj se naši diplomanti uspešno zaposlujejo tako v Sloven...

Beyond Backpropagation

Gartner is predicting a very bright near future for the "Machine learning". 2015 was a peak year of inflated expectations, now, in 2016 is following period of disillusionment and in 2017 should be reached the plateau of productivity. Elsewhere this process usually last for 10 years. One kind of the most popular modern "machine learning" is named "Deep Learning" what is another name for neural networks with little bit more layers and perhaps even with a convolution and/or recursion. The learning of this kinds networks was until now usually based on gradient descent, on slow, iterative, non-reliable process named Backpropagation . That kind of learning is very demanding and extensive. On plain computer can last for hours or even many days and is often unsuccessful concluded. Recently are appeared two algorithms that significantly improve this kind of machine learning: " Bipropagation " and " Border pairs method ". Bipropagat...