Preskoči na glavno vsebino

Artificial intelligence


          Artificial intelligence (AI) is a relatively young branch of science that stirs the imagination of many. Even movie directors from hollywood are not exceptions. Development in AI area is very fast and there is no indication that this will change soon. I still remember my first contact with learning devices. This happend at the end of the last millennium when I realized neural networks (NN). They have immediately attracted my attention, because such devices were not known till then.
   

      NN are made along the lines of mammalian brain. During the learning NN extract the essence from the data. After the learning we can ask NN questions. It gives us the right answers even to questions that during learning did not participate.  NN learns autonomously and therefore may exceed the teacher's (poeple's) knowledge. Here are some important achievements of artificial intelligence:


  • A couple of years ago the computer Deep Blue became the world champion of chess.



  • In the year 2011 a computer beat the two best human competitors on the US show Jeopardy.



  • Google already have a personal vehicle, which drives automatically on normal public roads and follows all traffic regulations.






  • Honda's famous robot ASIMO


  • Converting speech into written word and speech translation in a foreign language just experiencing a scientific breakthrough. After decades of effort machines have recorded and translated speech almost as good as the people.






And now a few words about my research work in the field of AI. I made my first research on the field of speech recognition. This is a complicated problem. I tried to find out, which NN would be suitable for the recognition of different speech voices (phonemes). I built a suitable NN and tought it to recognize syllables with the accuracy of about 95%.

My second research was on the field of robotics. I built a NN that moves the legs of a six-legged, ant-like robot. The robot can successfully overcome uneven ground and small steps.








One of the biggest problems on which I stumbled upon during the use of NN, was problematic learning. Like humans NN have problems with learning. The most known process of learning for the NN is  ‘‘Backpropagation’’. This learning process has some disadvantages. I dug into that and found a couple of ideas for improvement:

  • I have named my first improvement ‘‘Bipropagation’’. With it, I achieved a more than ten-times acceleration of learning. The learning is also more reliable. Bipropagation also solves very complex problems, where the Backpropagation method completely fails. It is a kind of a Deep learning. Demo App
  • The second improvement is called ‘‘Border Pairs Method’’ (BPM). This improvement first eliminates unimportant learning data. During the learning process, it finds the optimal construction of the NN and it doesn’t come to overfitting. After the learning, the NN answers correct all learning questions.

In essence, we could say, that the BPM method isn’t learning to memorize, but learning to understand. On top of that, the BPM method qualitatively allows us  removing of noise in the learning data, finding features and clustering. The BPM method combines the good qualities of the SVM method and Backpropagation.


In July 2014 a book entitled Advances in Machine Learning Research (Nova Publishers, New York) was published. It describes the mentioned algorithms (Bipropagation and BPM).

I’m looking forward to your response here or in our Artificial Intelligence community on the Google+.
الذكاء الاصطناعي

intelligence artificielle

intelligenza artificiale

人工知能

künstliche Intelligenz

искусственный интеллект

inteligencia artificial

Komentarji

  1. I am psychotherapist and I am very much excited about the computer modelling of understanding that is actually the essence of my practice. I wonder about your insights on that issue and definitely would like to know more.

    OdgovoriIzbriši
  2. I am psychotherapist and I am very much interested in machine understanding. Actually "understanding" is my core professional activity. I would appreciate your insights into that issue. The question is "how to model the process of deep understanding of one human being by another?".

    OdgovoriIzbriši
    Odgovori
    1. Dear Denis!

      Human understanding is for me new but interesting topic.
      What do you think about a chat by gmail about it.

      Bojan

      Izbriši
  3. Let's chat, it will be a real pleasure. I am mostly free to chat during evenings, starting from 20.00 Kiev time. During daytime too busy in understanding humans :)

    OdgovoriIzbriši
  4. I have just started a Machine Learning course and I find it quite fascinating. I read a lot about AI and I believe it is the future of computing .

    OdgovoriIzbriši
    Odgovori
    1. Sorry for late response. I totally agree with you. Do you like research?

      Izbriši

Objavite komentar

Priljubljene objave iz tega spletnega dnevnika

Bipropagation demo in TensorFlow

Bipropagation is a new Deep Learning algorithm. It is much faster and much more reliable than Backpropagation. Here is the demo from the  ResearchGate and GitHub. Inner layers of the Neural Network have not hidden anymore. Learning is done layer by layer with much fewer iterations. Please cite me in your work.


Click the G+button if you like this demo. Any comments are desirable.

Po poteh nekega algoritma

Ko sem med raziskovanjem za potrebe podiplomskega študija dobil idejo za nov algoritem strojnega učenja, me je prevzel notranji nemir. Zaslutil sem, da sem na sledi pomembnega odkritja in v hipu sem začutil kako se mi po žilah pretaka adrenalin. Pravijo, da je raziskovalna strast lahko večja  celo od tiste hazarderske,  ki je menda zakrivila številne zgodbe iz črne kronike. No, na vso srečo pa raziskovalna strast ni povezana s tako nizkotnimi pobudami kot hazarderska. Ideji algoritma je nato sledil njegov razvoj, ki je trajal več kot leto in je bil prežet s številnimi vzponi in padci. Navidezne težavice so pogosto preraščale v težave, a na srečo se je vedno našla rešitev za njih. V meni sta se tako prepletala dvom in radost, dokler eksperimenti niso potrdili vseh mojih pričakovanj. Takrat so me preplavili prijetni občutki vznesenosti, ki bi jih lahko primerjali z nekakšno zaljubljenostjo. Ko si vznesen si stvarnost slikaš lepšo, kot je v resnici in tako sem naivno pričakoval, da bo s…

A new Deep Learning Algorithm: One-Step Method

We are living in the AI era where progress is faster and faster each and every single day. Here is another one discovery in this field: One Step Method, a new machine learning algorithm which can do many things, amongst other can replace digital circuits with neurons, can find the even better construction of neural network than Border Pairs Method. More you can find in the 3rd chapter of our book: Machine Learning: Advances in Research and Applications from Nova Science Publishers.




This new algorithm is also suitable for Deep Learning in combination with other methods like convolutional learning, bipropagation, border pairs method, autoencoder and others.