Preskoči na glavno vsebino

Video: Two Deep Learning algorithms

  • Online web session (second half of  video, after 32 minutes of intro)


  • ABSTRACT

    In this video conference, two new algorithms for learning Feed-Forward Artificial Neural Network are presented. In the introduction, a brief description of the development of the existing algorithms and their flaws are shown. The second part describes the first new algorithm - Bipropagation. The basic idea is given first, followed by a detailed description of the algorithm. In the third part yet another new algorithm is given, called Border Pairs Method. Again is first given a basic idea and then follows a detailed description of the algorithm. In the fourth part, the results and findings of experimental work are presented. In the conclusion, it is found that two described algorithms are fast and reliable - the second one is also constructive.

    SPEAKER 

    Bojan PLOJ, PhD
    Born    1965 in Maribor, Slovenia, Europe
    Thesis   Border Pairs Method for learning of neural network
    Job 1 year R&D engineer at Birostroj Computers
       10 years teaching at Electronics high school in Ptuj
       4 years assistant professor University of Maribor
       7 years lecturer at Higher vocational college Ptuj
       3 years lecturer at the college of Ptuj (Artificial intelligence)
    Research
       Voice recognition with NN
       Hexapod gait control with NN
       Bipropagation algorithm for learning NN
       Border pairs method for learning NN 

Komentarji

Priljubljene objave iz tega spletnega dnevnika

Bipropagation demo in TensorFlow

Bipropagation is a new Deep Learning algorithm. It is much faster and much more reliable than Backpropagation. Here is the demo from the  ResearchGate and GitHub. Inner layers of the Neural Network have not hidden anymore. Learning is done layer by layer with much fewer iterations. Please cite me in your work.


Click the G+button if you like this demo. Any comments are desirable.

Po poteh nekega algoritma

Ko sem med raziskovanjem za potrebe podiplomskega študija dobil idejo za nov algoritem strojnega učenja, me je prevzel notranji nemir. Zaslutil sem, da sem na sledi pomembnega odkritja in v hipu sem začutil kako se mi po žilah pretaka adrenalin. Pravijo, da je raziskovalna strast lahko večja  celo od tiste hazarderske,  ki je menda zakrivila številne zgodbe iz črne kronike. No, na vso srečo pa raziskovalna strast ni povezana s tako nizkotnimi pobudami kot hazarderska. Ideji algoritma je nato sledil njegov razvoj, ki je trajal več kot leto in je bil prežet s številnimi vzponi in padci. Navidezne težavice so pogosto preraščale v težave, a na srečo se je vedno našla rešitev za njih. V meni sta se tako prepletala dvom in radost, dokler eksperimenti niso potrdili vseh mojih pričakovanj. Takrat so me preplavili prijetni občutki vznesenosti, ki bi jih lahko primerjali z nekakšno zaljubljenostjo. Ko si vznesen si stvarnost slikaš lepšo, kot je v resnici in tako sem naivno pričakoval, da bo s…

A new Deep Learning Algorithm: One-Step Method

We are living in the AI era where progress is faster and faster each and every single day. Here is another one discovery in this field: One Step Method, a new machine learning algorithm which can do many things, amongst other can replace digital circuits with neurons, can find the even better construction of neural network than Border Pairs Method. More you can find in the 3rd chapter of our book: Machine Learning: Advances in Research and Applications from Nova Science Publishers.




This new algorithm is also suitable for Deep Learning in combination with other methods like convolutional learning, bipropagation, border pairs method, autoencoder and others.